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Abstract
The April 20, 2013 Mw6.6 earthquake of Lushan County, Sichuan Province, China, has 
triggered 4540 landslides (> 1000 m2). Exploring a more effective method to assess land-
slide hazard in the affected area of this event is of great significance for disaster prevention 
and mitigation. By applying the Newmark model and two statistical analysis models (logic 
regression and support vector machine, LR and SVM), this study addressed this issue. 
In the Newmark model, we used the landslide point density, the average gradient (mean 
slope) and the mean peak ground acceleration to group the lithology and created a critical 
acceleration (ac) map. The Newmark displacements and the probability of the slope insta-
bility are mapped by combining the ac map and PGA map. In the statistical analysis models 
of LR and SVM, 7040 samples (4540 landslide sites and 2500 random non-landslide sites) 
were randomly divided into the training set (5000 samples) and validation set (2040 sam-
ples). Based on the relationship between landslide distribution and influence factors, we 
selected the critical acceleration (ac) value, topographic relief, PGA, and distance to rivers 
as the independent variables for LR and SVM. Finally, the ROC curves for three land-
slide hazard models were drawn and the AUC values were calculated. The landslide hazard 
maps produced by LR are similar to those by applying SVM. The AUC values indicate 
that these two models combined with ac data perform better than the simplified Newmark 
model. In this study, a new method of integrating statistical analysis models (LR and SVM) 
with critical acceleration (ac) for earthquake landslide hazard assessment is presented, 
which can be used to carry out seismic landslide hazard assessment more effectively than 
the simplified Newmark model.
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1  Introduction

Co-seismic landslides can cause significant economic losses and casualties and thus 
have received much attention of researchers in the community of geosciences in 
recent years (Keefer 1984; Rao et al. 2017; Xu et al. 2014, 2016, 2018). Many stud-
ies focus on landslide inventory, slope-failure statistics and hazard assessment, provid-
ing important support for mitigation of earthquake-induced landslide hazard (Nowicki 
et al. 2014; Xu and Xu 2012; Xu et al. 2012a, 2015, 2016). Currently, the commonly 
used methods of landslide hazard assessment include statistical analysis methods 
and Newmark model method. The statistical analysis (Akgun 2012; Kavzoglu et  al. 
2015; Nowicki Jessee et al. 2018; Nowicki et al. 2014; Ohlmacher and Davis 2003; Xu 
et al. 2012b, 2013a) uses co-seismic landslide inventories to establish the mathemati-
cal statistical models between these landslides and landslide-related factors, including 
hydrology, geology, topography and human activity. According to the established mod-
els, the landslide hazard assessment of the whole study area is conducted. At present, 
there has been massive assessment based on mathematical statistical analysis, espe-
cially those based on the logic regression (LR) (Bai et al. 2015; Huang et al. 2015; Lee 
2005; Umar et  al. 2014; Xu et  al. 2013b) and support vector machine (SVM) (Hong 
et  al. 2015; Kavzoglu et  al. 2015). These two statistical analysis methods have been 
widely used for the regional landslide hazard prediction and achieved good results. 
The advantages of these statistical methods are that the establishments of models are 
based on real landslide distribution, and the assessment results are relatively objective. 
But they lack the understanding of landslide occurrence mechanism.

The Newmark (1965) method estimates co-seismic landslide displacement by mod-
eling a landslide as a sliding block on an inclined plane that has a known critical or 
yield acceleration. (The ground acceleration needed to overcome sliding resistance and 
initiate downslope movement.) The modeled displacement is used as an index to judge 
the seismic stability of the slope. (Al-Homoud and Tahtamoni 2000; Dreyfus 2011; 
Dreyfus et  al. 2013; Godt et  al. 2008; Jibson et  al. 1998, 2000; Jibson and Michael 
2009; Kaynia et al. 2011; McCrink 2001; Miles and Ho 1999). It is now widely used 
in assessment of geotechnical effects of co-seismic landslides in the world, such as 
the 1979 Coyote Lake earthquake (Wilson and Keefer 1983), 1994 Mw6.7 Northridge 
earthquake (Jibson et al. 2000), 1989 Mw6.9 Loma Prieta earthquake (McCrink 2001) 
and 2008 Mw7.9 Wenchuan earthquake (Godt et  al. 2008). However, the Newmark 
model does not consider the related influencing factors aforementioned. Many studies 
have shown that these factors have important influences on the occurrence of land-
slides. Meanwhile, the prediction based on the Newmark model needs definite physi-
cal properties of rocks and ground motion parameter to calculate slope displacements 
(Pradel et al. 2005), while such data are usually difficult to acquire under the current 
technical conditions. So the landslide hazard assessment solely based on the Newmark 
model remains challenging.

Based on the distribution of landslides, this work used the Newmark model and 
two statistical analysis methods (LR and SVM) integrating with the output results of 
the Newmark method to conduct the landslide hazard assessment of the Lushan earth-
quake and hoped to find a more effective method for landslide hazard assessment. It 
would shed light on improving the seismic landslide prediction and a reference for 
disaster prevention and reduction in seismic areas.
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2 � Lushan earthquake and geological setting

The collision of the Indian and Eurasian plates resulted in the uplift of the Tibetan Pla-
teau and eastward motion of a series of blocks in this highland. Obstructed by the rigid 
Sichuan Basin, the Longmenshan thrust zone formed along the boundary between the 
Tibetan Plateau and Sichuan Basin, at which the accumulated strain is released dur-
ing frequent earthquakes. The April 20, 2013 Mw6.6 earthquake in Lushan, Sichuan, 
China, is another major shock following the 2008 Wenchuan Mw7.9 event on this fault 
zone (Fig. 1). It is composed of three thrust fault systems, which are the Maoxian–Wen-
chuan (also called Houshan), the Yingxiu–Beichuan fault (also called Zhongyang), and 
the Guanxian–Jiangyou fault (also called Qianshan) from northwest to southeast (Xu 
et al. 2009). These faults comprise a series of cascaded fractures of smaller scales. The 
2013 Lushan earthquake occurred in the southwest section of the Longmenshan thrust 
zone. Its epicenter is located at the Shuangshi Dachuan fault (southwest section of Qian-
shan fault). No co-seismic surface rupture of this event was observed. Field investiga-
tions, focal mechanism solutions and spatial distribution of aftershocks indicated that 
the seismogenic fault of the Lushan quake is likely a blind reverse fault southeast of the 
Shuangshi–Dachuan fault (Xu et al. 2013c).

Fig. 1   Map showing topography and tectonics of the Tibetan Plateau’s eastern margin. MJF Mingjiang 
fault, XSHF Xianshuihe fault, HYF Huya fault, LQSF Longquanshan fault. The active fault lines are from 
Deng et al. (2007)
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3 � Data and method

3.1 � Methodology

3.1.1 � Newmark displacement model

The Newmark displacement method was proposed for the stability of dams under earth-
quakes (Newmark 1965). It thinks the dam instability depends critically on the deforma-
tion of the dam, rather than the minimum safety factor. It simulates a landslide as a rigid 
friction block that slides on an inclined plane at a known critical (or yield) acceleration, 
ac, which is simply the threshold base acceleration required to overcome shear resistance 
and initiate sliding. The analysis calculates the cumulative permanent displacement of the 
block relative to its base as it is subjected to the effects of an earthquake acceleration-time 
history. Those portions of the record that exceed the critical acceleration are integrated 
twice to obtain the cumulative displacement of the block (Jibson 1993).

The Newmark simplified model calculates three parameters: the safety factor (Fs), criti-
cal acceleration (ac) and the cumulative displacement (Dn).

According to the geometric properties [soil thickness (t), the degree of soil saturation 
(m); slope angle (α)] and mechanical properties [effective cohesion (c′), internal friction 
angle (ψ′), unit weight of soil and rock (γ) and unit weight of underground water (γw)], we 
can calculate the safety factor (Fs) by Eq. (1):

The critical acceleration (ac) is calculated by the safety coefficient Fs based on the infi-
nite slope method (Eq. 2):

Simplified regression models to estimate Newmark displacement are regressed by anal-
ysis of strong ground motion records. At present, many researchers have fitted different 
Newmark models based on the global strong-motion records (Bray and Travasarou 2007; 
Jibson 2007; Jibson et al. 1998; Rathje 2008; Saygili and Rathje 2008). According to the 
2270 strong-motion records of 30 worldwide earthquakes, Jibson (2007) obtained different 
simplified Newmark models based on different ground motion parameters. In this study, we 
selected one of the Newmark models using PGA. The Newmark displacement maps were 
prepared by combining the ac map and PGA map based on Eq. (3)

where Dn is the Newmark displacement, ac is the critical acceleration, and PGA is the peak 
ground acceleration.

3.1.2 � Logistic regression (LR)

The logistic regression approach has widely been used for landslide hazard assessment in 
recent years and become the most common methodology in the disaster assessment (Ayalew 
and Yamagishi 2005; Dai et al. 2001; Guzzetti et al. 1999; Nowicki Jessee et al. 2018; Nowicki 
et al. 2014; Umar et al. 2014). This algorithm applies maximum likelihood estimation after 
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transforming the dependent variables into the logic variables (the natural log of the odds of the 
dependent occurring or not) (Bai et al. 2015). In this way, the results of the logistic regression 
generate a useful formula for predicting the probability of presence or absence of a character-
istic or outcome based on the values of a set of predictors. An equation predicting the land-
slide occurrence can be derived as follows, based on the description provided by Hosmer and 
Lemeshow (2005).

Quantitatively, the relationship between the probability of landslide occurrence and its 
dependency on several variables can be expressed as:

where p refers to the estimated probability of landslide occurrence. The value of p is con-
strained within a range between 0 and 1, where 0 indicates a 0% probability of a landslide 
and 1 indicates a 100% probability. The term z is the linear combination of independent 
variables:

where β0 is the intercept of the model, i is the number of independent variables, βi 
(i = 1, 2, 3, …, n) is the slope coefficient of the model, and xi (i = 1, 2, 3, …, n) is the inde-
pendent variable.

3.1.3 � Support vector machine (SVM)

Due to the high nonlinearity of geological hazards, there are obvious shortcomings in the 
traditional statistical analysis method in expressing this nonlinearity. Researchers (Hu et al. 
2007; Marjanović et al. 2011; San 2014; Yao et al. 2008) attempted to apply the support vec-
tor machine (SVM) for geological hazards evaluation and found that it is very suitable for 
spatial prediction of landslide hazard. It can solve the classified and fitting problems, which is 
characterized by distinctive superiority in solving the nonlinear problem and high-dimensional 
pattern recognition with less samples. It has stronger theoretical basis and better performance 
compared to the neural network learning algorithm.

Consider a set of linear separable training vectors xi (i = 1, 2, …, n). The training vectors 
consist of two classes, which are denoted as yi = ± 1. The goal of the SVM is to search for an 
n-dimensional hyperplane differentiating the two classes by the maximum gap. Mathemati-
cally, we minimize

subject to the following constraints

where ||w|| is the norm of the normal of the hyperplane, b is a scalar base, and ·denotes the 
scalar product operation. Introducing the Lagrangian multiplier, the cost function can be 
defined as
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where ki is the Lagrangian multiplier. The solution can be achieved by dual minimizing 
Eq. (3) with respect to w and b through standard procedures, and the detailed discussions 
can be found in the literature (Marjanović et al. 2011).

For a non-separable case, one can modify the constraints by introducing slack variables:

Equation (8) can be modified as

where v (0, 1] is introduced to account for misclassification. In the present study, + 1 and 
− 1 represent the failed and stable cases, respectively. One can easily see that stable cases 
are not available and have to be generated.

This study was based on the radial base kernel function (RBF) in version LIBSVM-3.22 
(Chang and Lin 2011) and used the cross-validation method to optimize the parameters of 
the penalty factor C and the kernel function parameter.

3.2 � Data sources and processing

The Lushan earthquake induced massive different types of landslides, including highly dis-
rupted shallow slides and rock falls, deep landslides and large rock avalanches (Xu et al. 
2015). According to the distribution of these landslides, the study area was defined as an 
elliptical area (Fig. 2), which covers 5396 km2 with elevations 300 m to 6000 m. In lithol-
ogy, the study area is dominated by sandstone, limestone, dolomite, mudstone, granite and 
quaternary sediments. The major rivers in the study area are the Xingjing River, Shiyang 
River, and Linguan River. Most seismic landslides are present along the two sides of these 
rivers (Fig. 2). 

A detailed, accurate, objective, and complete co-seismic landslide database was 
employed in this study, which was derived from post-earthquake high-resolution aerial 
photographs and satellite images, as well as a series of pre-earthquake high-resolution sat-
ellite images. The previous work (Xu et al. 2015) indicated that the Lushan earthquake trig-
gered 15,546 landslides larger than 100 m2, of which 4540 pieces are larger than 1000 m2 
(Fig.  2). Considering the accuracy of data, these 4540 landslides were employed as the 
samples for this work. For the selection of non-landslide samples, we randomly chose 2500 
samples in the landslide-free area, i.e., outside the buffer zone of landslide samples (buffer 
radius = 100  m). Finally, we got 7040 samples, from which we randomly selected 5000 
samples for modeling (training), and the remaining 2040 samples were used for tests.

The resolution of DEM in the study area is 10 m. The topographic relief and slope angle 
were derived from this DEM. The river networks were also extracted from this DEM. 
Lithology was from the 1: 200,000 geological map.

At present, objective lithology classification and assignment based on geological maps 
remains one of the difficult problems for regional evaluation in the Newmark method (Gal-
len et al. 2015, 2016; Jibson et al. 2000). As different geological settings can lead to var-
ied mechanical properties of rocks and soils, thus there may be a strong subjectivity in 
grouping the lithology based on the types of rock and soil masses. Gallen et  al. (2015) 
used the Newmark model and co-seismic landslide inventory of the 2008 Wenchuan earth-
quake to invert material properties, and the results show that the strength inversion of rock 
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mass based on co-seismic landslide inventory is an effective method to improve the assign-
ment of material properties. In addition, Jibson et  al. (2000) argued that compared with 
the accurate mechanical parameters of lithology, the mechanical differences between dif-
ferent lithology groups may be more important for the prediction results of the Newmark 
model. So, in this study, we referred to the results of previous study (Xu et al. 2015), and 
obtained landslide density (LND), average slope gradient (mean slope) and average peak 
ground acceleration (mean-PGA) in homogeneous lithology ages by statistics. Meanwhile, 
according to the rock engineering standards used in China (Ministry of Water Resources of 
the People’s Republic of China 2014), the rocks in the study area were classified into five 
types: hard (Group 1), relatively hard (Group 2), soft (Group 3), weak (Group 4) and loose 
(Group 5).

The lithology of hard type includes granite, diorite and intrusive rocks. However, due 
to the influence of geological structures, their actual strength should be obviously lower 
than that expected. As shown in Fig. 3, the landslide density in this group of rocks reached 
the maximum, 2/km2. Therefore, appropriate reduction for mechanical values of Group 1 
is made (the reduction coefficient is set to 0.7). The relatively hard type of rocks (Group 2) 
involves five strata: Pre-Sinian, Ordovician, Silurian, Devonian and Jurassic. The lithology 
is mainly composed of clasolites and carbonatites. Although the mean slope of this group 
is high, the values of both mean-PGA and the landslide density are small (Fig. 3). So it is 
reasonable that this rock mass is classified into the relatively hard rock.

Fig. 2   The study area (yellow line) and Lushan earthquake-triggered landslides with area ≥ 1000 m2
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The strata of soft rock type (Group 3) involve three strata: Cretaceous, Sinian and Tri-
assic. The lithology is mainly composed of sandstones, mudstones, dolomites and lime-
stones. The values of landslides density in this rock type range from 0.73 to 1.01/km2; of 
which that of Triassic strata reaches the maximum, 1.01/km2. The reason for this phenome-
non is due to the larger value of the PGA in the Triassic strata, which resulted in the higher 
landslide density than the other two strata.

The strata of weaken rock (Group 4) include Carboniferous and Permian. The lithology 
is dominated by limestones and siltstones, where the landslide density reached 1.18/km2, 
and the value of PGA is not high with 0.26 g, so these two strata were considered as the 
weak rock type.

The Tertiary–Quaternary strata (Group 5) are of loose materials (alluvium and gravel, 
coarse conglomerate, siltstone). In Fig. 3, little landslides are present in the quaternary sys-
tem. This is because the slope angle of this stratum is relatively low (generally less than 
10°), so experienced small gravitational effect during the quake.

Conducting a Newmark analysis requires input data such as strong ground motion, shear 
strength, and slope angle. First of all, the depth of the failure surface was set to 3.0 m based 
on field observations and previous research (Dreyfus et al. 2013; Jibson et al. 2000). The 
pore water pressure (m = 0 in Eq. 1) was neglected because of the dry condition during the 
temblor in the study area.

The strength parameters and details for each group are adopted from geotechnical 
bibliography (Ministry of Construction of the People’s Republic of China 2009; Min-
istry of Water Resources of the People’s Republic of China 2014) and previous studies 

Fig. 3   Landslide density, mean value of slope and PGA in various lithology ages. LND landslide number 
density, Q quaternary, N&P neogene and paleogene, K cretaceous, J jurassic, T triassic, P&C permian and 
carboniferous, D devonian, S silurian, O ordovician, Sn Sinian, Pre-Sn Pre-Sinian, I intrusive rock
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(Chen et al. 2014a; Dreyfus et al. 2013). The slope angles were derived from the DEM 
(10  m). The distribution of slope gradient (Fig.  4a) indicates that most of the study 
area hosts slopes with angles from 20° to 40°. Figure 4b shows the rock grouping and 
mechanical parameters of each group.

Using the input data, the factor-of-safety map (Fig. 5a) and the critical acceleration 
(ac) map (Fig. 5b) were prepared using Eqs. 1 and 2, in which the ac value represents a 
measure of intrinsic slope properties and can be identified as the seismic landslide sus-
ceptibility. Then, the Newmark displacement (Fig. 6) was estimated through the sim-
plified Newmark model (Jibson 2007).

Fig. 4   Map showing distribution of slope angles and rock formations. a Slope angle; b strength groups

Fig. 5   Map showing distribution of critical acceleration (ac) and PGA; a critical acceleration (ac), b peak 
ground acceleration (PGA)
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3.3 � Research process

The detailed flow chart of this study is shown in Fig. 7. The basic spatial database comprises 
the co-seismic landslide inventory, geological and topographic data, seismic data such as 
PGA, as well as other data derived from the above data. The research was divided into two 
parts: (1) the Newmark simplified model; (2) two statistical analysis models integrating with 
the Newmark model. In the Newmark model, we used the landslide number density (LND), 
the average slope gradient (mean slope) and the mean ground motion peak acceleration (mean-
PGA) to group the lithology. A critical acceleration (ac) map was prepared by combining with 
lithologic grouping results of the study area. The Newmark displacement map was compiled 
by combining the ac map and PGA map of the study area, and the slope instability probability 
distribution was obtained based on the slope failure probability function.

In the two statistical analysis models (LR and SVM) integrating with the output results 
of the Newmark model, correlations between co-seismic landslide number density (LND) 
and six factors were analyzed. Four factors, critical acceleration (ac), topographic relief, 
PGA and distance to rivers, were selected as the influencing factors of the Lushan earth-
quake landslides. Using the training samples, the landslide hazard assessment was carried 
out by the logistic regression model (LR) and support vector machine (SVM), respectively. 
Finally, the training set and test set were used to compare the landslide hazard evaluation 
results of three models.

4 � Analysis of factors

At present, there is no widely accepted standard for the selection of influencing factors for 
landslide hazard assessment (Yalcin 2008), though selecting appropriate evaluation param-
eters is very important for establishing assessment models. In general, the occurrence of 

Fig. 6   Map showing distribution 
of Newmark displacements of the 
Lushan earthquake
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co-seismic landslides is mainly controlled by seismic, topographic and geological factors. 
Considering these conditions in the study area and other data, six influential factors were 
chosen. By analyzing the value of landslide number density (LND) in each classification 
of the factors, the influencing factors that have strong correlation with the landslide occur-
rence were selected as the evaluation parameters (independent variables) to establish the 
model.

4.1 � Critical acceleration (ac)

Previous research (Chen et  al. 2014b) showed that critical acceleration (ac) is a good 
and reliable criterion to assess slope stability. In fact, a greater ac value means that a 
slope requires a greater force to overcome its stability. When the ac value is low, sliding 

Fig. 7   Procedural flow chart of this study. a Technical route of simplified Newmark model; b technical 
route of statistical analysis models (LR and SVM); c landslide hazard mapping and model comparison; d 
six influencing factors used in analysis (ac, PGA, Dn, topographic relief, distance to road, distance to river); 
M-PGA: average values of PGA in different lithology ages; M-slope: mean values of slope angle in various 
lithology ages; LND: landslide number density in various lithology ages
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occurs more easily on a slope. We divided critical acceleration (ac) into groups accord-
ing to the value of ac, and the result (Fig. 8a) shows that there is a good negative corre-
lation between critical acceleration (ac) and the landslide number density (LND). LND 
decreases with the increase in critical acceleration (i.e., the greater the ac is, the more 
stable the slope is, the less likely the slope is exposed to failure).

Fig. 8   Relationship between LND (landslide number density) and each related factor. a Yield acceleration 
(ac), b PGA, c Newmark displacement (Dn), d topography relief, e distance to river, f distance to river
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4.2 � Peak ground acceleration (PGA)

PGA is one of the most important factors related to earthquake-triggered landslides, 
as in the cases of the 1999 Chi–Chi, the 2008 Wenchuan, and the 2013 Lushan earth-
quakes. It is often used as an important factor in landslide hazard assessment. Generally, 
The LND is positively correlated with the value of PGA, the higher the value of PGA is, 
the greater the possibility of landslide occurrence is. In this study, the PGA value was 
divided by 0.05 g into 10 groups. The result (Fig. 8b) shows that there is a poor positive 
correlation between the PGA value and the LND; the value of LND reaches the maxi-
mum in the range of 0.3–0.35 g, which is 3.1/km2.

4.3 � Newmark displacement (Dn)

We divided Newmark displacement (Dn) into groups and counted the value of LND in 
each group. The result (Fig. 8c) shows that on the whole, Dn has a good correlation with 
the LND (i.e., the greater the Dn value is, the greater the LND value is). But when the 
Dn is in the range of 5–10 cm, LND decreases with the increase in the Dn value. The 
main reason for this is probably that because the inputs into the Newmark analysis are 
poorly constrained, the outputs do not match observations very well.

4.4 � Topographic relief

The study area is characterized by complex topography, with elevation decreasing from 
the west to the east. The maximum elevation is 5724 m, and the minimum is 336 m, 
2851 m on average. The key of calculating the relief is to get the maximum and mini-
mum elevation of the analysis window. Generally, the relief increases significantly 
with the growth of the analysis window. When the threshold is reached, the relief will 
not change significantly with the increase in the analysis window. This inflexion cor-
responds to the best analysis window. In this paper, based on the window increasing 
method, the inflexion was found by increasing the window gradually and calculating the 
terrain relief under different scales. Finally, the best analysis window was 2 km × 2 km 
(Jian et al. 2007). By processing the 10 m DEM, we obtained the topographic relief of 
the study area and counted the landslide density at different levels of the terrain relief 
(Fig. 8d). The result shows a positive correlation between the LND and the relief.

4.5 � Distance to rivers

River banks can fail due to slope erosion. Many studies show that the proximity to the 
drainage lines is an important factor controlling the occurrence of landslides. In the 
study area, landslides occurred frequently on stream banks. To incorporate the effect 
of rivers on landslide initiation, we calculated the shortest distance from each landslide 
point to the rivers. Meanwhile, we constructed 11-class buffers from drainages with a 
200  m interval and counted the value of LND in each class. The nonlinear negative 
logarithmic relationships between the distance to drainages and the landslide density at 
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different levels are shown in Fig. 8e, indicating the LND decreases with the increase in 
the distance to drainage.

4.6 � Distance to roads

The construction of mountain roads has a significant influence on the local physical geo-
graphical environment. Road construction may increase the instability of the slope. When 
driven by the collapsing force of an earthquake, both sides of roads are particularly prone 
to landslides. The shortest linear distance method was used to calculate the distance 
between each landslide site and the nearest road. The nonlinear relationships between the 
landslide density and different distances to roads from this work are shown in Fig. 8f. The 
LND decreases gradually with greater distance to roads, i.e., the closer the area to a road, 
the greater the density of landslides.

In logistic regression, multicollinearity diagnosis is necessary to check the correlation 
of independent variables. Tolerance (TOL) and the variance inflation factor (VIF) are two 
important indexes that are widely used for multicollinearity diagnosis. According to Hos-
mer and Lemeshow (2005), a TOL value less than 0.2 is an indicator for multicollinearity, 
and serious multicollinearity occurs between independent variables when the TOL values 
are smaller than 0.1. If VIF value exceeds 10, it is usually regarded as indicating multicol-
linearity. The TOL and VIF values in this study are shown in Table 1. It reveals that there 
is no multicolinearity between any of the factors.

The Pearson method is used to test the independence of the six factors. The correlation 
between the six factors w is shown in Table 2. The results show that the correlation coef-
ficient between road distance and river distance is 0.67, and the linear correlation between 
other factors is weak.

Table 1   Multicollinearity 
diagnosis indexes for variables

Independent variables Tolerance VIF

Yield acceleration (ac) 0.913 1.096
PGA 0.795 1.258
Dn 0.991 1.009
Topographic relief 0.792 1.262
Distance to rivers 0.512 1.954
Distance to roads 0.532 1.880

Table 2   Auto-correlation between these parameters

ac Dn PGA Topographic relief Distance to rivers Distance to roads

ac 1 − 0.09 − 0.03 0.22 0.09 0.16
Dn 1 0.03 0.03 − 0.01 − 0.01
PGA 1 − 0.34 − 0.33 − 0.27
Topographic relief 1 0.21 0.03
Distance to rivers 1 0.67
Distance to roads 1
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Analyzing landslide density distribution between ac and Dn, we found that due to the 
constrained input of PGA, LND does not increase with the increase in the Dn value in local 
areas. In addition, roads are often accompanied by rivers, resulting in a high linear correla-
tion between the roads and rivers. So considering the above factors, we finally chose the 4 
influencing factors, critical acceleration (ac), topographic relief, PGA and distances to riv-
ers as evaluation factors for building the evaluation model.

5 � Results and analysis

In this study, LR was applied from the SPSS software and the coefficients were measured. 
Table 1 shows the extracted coefficients of the all variables by logistic regression analysis. 
The significance levels of the ac values, PGA, distance to rivers, and topographic relief are 
all less than 0.05. The four variables are therefore considered to have a significant impact 
on the landslide occurrence. This statistical technique is a multivariate estimation that 
examines the relative strength and significance of factors. A positive sign indicates that the 
explanatory variable has increased the probability of change, and a negative sign implies 
the opposite effect. The result shows that PGA and topographic relief have positive correla-
tions with landslide occurrences, with regression coefficients of 3.236 and 3.496, respec-
tively; distance to rivers and ac values have negative correlations with landslide occur-
rences, with regression coefficients of − 2.828 and − 2.224, respectively.

Equation (11) was derived according to the coefficients of logistic regression shown in 
Table 3, which was used to predict the possibility of landslide occurrence:

where P is the estimated probability of landslide occurrence; χi represents the normalized 
values of causative factors.

The corresponding weight values were given to each causative factor according to the 
logistic regression coefficients, and the landslide hazard probability map of LR was pre-
pared through the superposition operations of each causative factor layer (Fig. 9a).

The selection of the kernel function parameter and penalty parameter can affect the pre-
cision of the support vector machine significantly. The radial basis function (RBF) was 
used for the kernel, which is one of the most powerful kernel functions (Yao et al. 2008; 
Pradhan 2013). Previous research (Xu and Xu 2012; Xu et al. 2012b) showed the RBF ker-
nel function may be more suitable for landslide susceptibility mapping. The mathematical 

(11)P =
exp

(
0.272 − 2.828�1 + 3.236�2 − 2.224�3 + 3.496�4

)

1 + exp
(
0.272 − 2.828�1 + 3.236�2 − 2.224�3 + 3.496�4

)

Table 3   Variables applied to the 
logistic regression equation

a  All requested varibales entered
The significance levels of four independent variables are less than 0.05

Variable β SE Wals Sig.a Exp (β)

ac (χ1) − 2.828 0.219 167.010 0.000 0.059
PGA (χ2) 3.236 0.141 526.288 0.000 25.429
Distance to rive (χ3) − 2.224 0.236 89.077 0.000 0.108
Topographic relief (χ4) 3.496 0.292 143.809 0.000 32.991
Constant 0.272 0.217 1.565 0.211 1.312
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expression of the RBF function KRBF

(
x − x�

)
 (Eq. 12) was employed in this study. In addi-

tion, the prediction capability of the SVM is also strongly influenced by the selection of 
the two parameters, C and g. Therefore, these parameters need to be carefully determined. 
C is the regularization parameter; if the value of C is large, it will lead to few training 
errors. In contrast, a small value of C will generate a larger margin and increase the number 
of training errors. The other parameter, g, manipulates the degree of nonlinearity in the 
SVM model. In this study, the best values of the two parameters were determined using the 
cross-validation algorithm based on MATLAB 2012b. Using the training dataset, the best 
C and g were determined as 64 and 5.65, respectively

Using the best pair of the RBF kernel parameters, the SVM model was constructed 
using the training data and then the model was applied to calculate landslide hazard 
index for the entire study area. Finally, landslide hazard probability map (Fig.  9b) in 

(12)KRBF

(
x − x�

)
= exp

(
−g||||x − x�||||

2
)
.

Fig. 9   Probability maps of Lushan earthquake triggered landslides using three methods. a LR, b SVM, c 
Newmark model
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the study area was created. The closer the value is to 0, the smaller the possibility of 
landslide occurrence is, and the closer the value is to 1, the greater the possibility of 
landslide occurrence is.

The Dn values represent the danger level of earthquake-induced landslides; the 
higher the Dn value is, the higher landslide occurrence is. Jibson et al. (2000) compared 
the locations of mapped landslides with the predicted displacement map and quantita-
tively evaluated the probability of failure (Pf) for different ranges of displacements with 
a Weibull curve (Eq.  13). In this study, we used this regression curve to prepare the 
landslide hazard probability map based on the Dn map of the 2013 Lushan earthquake. 
Finally, we prepared a probability map of slope failure based on the Newmark model 
(Fig. 9c), the probability of failure ranged from 0 to 0.335

where Dn is the Newmark displacement in centimeters. Probability of failure (p(f)) is 
defined as the percentage of landslide cells within a displacement bin.

For LR and SVM, the landslide hazard index was ranked into four classes by inter-
val 0.25, which are as follows: very low (0–0.25), low (0.25–0.5), moderate (0.5–0.75), 
and high (0.75–1). For Newmark model, the probability of failure was ranked into four 
classes by interval 0.1, which are as follows: very low (0–0.1), low (0.1–0.2), moderate 
(0.2–0.3), and high (0.3–0.4). Finally we obtained the hazard maps of Lushan earth-
quake-triggered landslides based on different models (Fig. 10). In order to compare the 
evaluation results of different methods, 15,546 landslides (area ≥ 100 m2) triggered by 
the Lushan earthquake were counted. Figure 11 is the statistical results of the zoning 
area, the number of landslides and the landslide number density in different classes of 
different models.

The results show that in logistic regression, the area of high hazard class is 880.3 km2, 
which accounts for 16.3% of the total study area. The number of landslides in this zone is 
8977, accounting for 57.7% of the total landslides. 18.15% of the study area is designated 
as the middle hazard zone, where the number of landslides is 4278, accounting for 27.5% 
of the total number of landslides. On the whole, most landslides are concentrated in the 
middle and high hazard zones.

In SVM, the area of high hazard class is 1257.1 km2, which accounts for 23.4% of the 
total study area. The actual number of landslides is 11,121, accounting for 71.5% of the 
total landslides. The area of middle hazard class is 2304.9 km2, which accounts for 42.9% 
of the total study area. The number of landslides is 3585, accounting for 23.1% of the total 
number of landslides. Unlike the statistical results of the LR model, the area of very low 
hazard class based on SVM is smaller, only 12.8 km2, which accounts for 0.2% of the study 
area. However, the area of very low hazard class based on LR model is 1260.1 km2, which 
accounts for 23.4% of the study area.

In contrast, the evaluation results based on the Newmark model are relatively not good. 
Most landslides are concentrated in the very low hazard zone, where the number of land-
slides is 10,523, accounting for 67.6% of the total landslides. The area of high probability 
of failure class is 211.8 km2, which accounts for 3.9% of the total study area, in which the 
number of landslides accounts for 16.1% of the total landslides.

Furthermore, we calculated the landslide number density in different hazard classes of 
the three models. From Fig. 11, we can see that the LND trend line of the Newmark model 
is very different from the LND trend lines of LR and SVM. The results of two statistical 
models (LR and SVM) show that the landslides density increases rapidly with the increase 
in the hazard level. For the Newmark model, massive landslides occurred in the area of 

(13)P(f ) = 0.335
[
1 − exp

(
−0.048D1.565

n

)]
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very low class, the landslide density in this area reaches 2.1/km2, and landslide density 
does not increase with the increase in hazard level.

In this study, the ROC curve is also used to evaluate the accuracy of the models. In 
statistics, a receiver operating characteristic curve, i.e., ROC curve, is a graphical plot that 
illustrates the diagnostic ability of a binary classifier system as its discrimination threshold 
is varied. The ROC curve is a useful method of representing the quality of deterministic 
and probabilistic detection and forecast system (Swets 1988). The ROC curve plots the 
false positive rate (1-specificity) the X axis and 1-the false negative rate (sensitivity) on the 
Y axis. It shows the trade-off between the two rates. The area under the ROC curve (AUC) 
can be used for quantitative comparison of these models (Brenning 2005). If AUC < 0.5, 
the prediction result is opposite; AUC = 0.5, stochastic model; AUC between 0.5 and 0.7, 
the model has lower accuracy; AUC between 0.7 and 0.9, the model has higher accuracy; 
and AUC > 0.9 indicates an ideal model. The output results of the training set and the vali-
dation set were calculated, and the result of ROC curve was obtained (Fig. 12). The results 

Fig. 10   Hazard maps of Lushan earthquake triggered landslides prepared by three methods. a LR, b SVM, 
c Newmark model
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show that the two models of LR and SVM have good prediction accuracy, but the pre-
diction results of Newmark model are not good. For training samples, the AUCs of LR 
and SVM are 0.810 and 0.823, respectively; the AUC of Newmark model is 0.736. For 

Fig. 11   Histogram showing relative distribution of various hazard levels and landslide occurrence from 
three methods. a LR, b SVM. c Newmark model
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validating samples, the AUC is 0.820 for LR, 0.802 for SVM, and 0.735 for the Newmark 
model, respectively.

6 � Discussion

Although a variety of methods (Akgun 2012; Althuwaynee et al. 2014; Hong et al. 2015; 
Kavzoglu et  al. 2015) have been applied to landslide hazard evaluation, the accuracy of 
different evaluation models remains controversial. This work attempted to combine the 
Newmark model and the statistical analysis models (LR and SVM) to conduct the land-
slide hazard assessment of the Lushan earthquake, and to establish a more effective evalu-
ation model. Based on the landslide density, average slope (mean slope) and average PGA 
(mean PGA) in various lithology ages, the lithology of the study area was more objectively 
grouped, and the critical acceleration (ac) and the cumulative Newmark displacements (Dn) 
were mapped. We combined the statistical models and the output results of the Newmark 
model, while taking into account the induced mechanism of earthquake landslides and 
other controlling factors, to construct a new model. The result shows that the evaluation 
results based on this model have good prediction accuracy.

At present, Newmark analysis is widely used in assessment of co-seismic landslide haz-
ard, while the practice shows its quantitative evaluation results have defects. The main rea-
son is that in this method, it is difficult to reasonably estimate mechanical parameters of 
rock and soil and ground motion parameters. In this study, we grouped the lithology of the 
study area based on the inventory of Lushan earthquake landslides. But because of lacking 
the accurate PGA distribution in the study area, the values of Dn cannot permit to accu-
rately predict the actual landslide distribution.

The earthquake ground motion is one of the most important factors in landslide hazard 
assessment, and PGA distribution map (issued by USGS) is the most common data source 
of it, so this study used ac (intermediate output data of Newmark model), and PGA as 
influencing factors for the statistical methods. Meanwhile, we considered other influenc-
ing factors, such as river incision, topographic relief and artificial excavation, so that the 

Fig. 12   ROC curves for LR, SVM and Newmark model. a Training samples set, b validating samples set
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mechanism of earthquake landslides was taken into the statistical analysis method, and the 
limitation of the Newmark model was compensated.

From the distribution of landslide density, we can find that compared with the values of 
Dn, critical acceleration may reflect better the actual landslide distribution of the Lushan 
earthquake. In the Newmark model due to the constrained input data of PGA, the region 
where the value of critical acceleration (ac) is less than the value of PGA is considered as 
landslide-free area, i.e., Dn value equal to 0. However, the actual distribution of Lushan 
earthquake landslides shows that a large number of landslides are present in the area with 
the Dn value equal to 0. This indicates that there is a big discrepancy between the actual 
landslide distribution and the prediction results based on the Newmark model by using 
poorly constrained strength and ground motion inputs, and the evaluation of the Newmark 
simple model is not good. In fact, according to accurate input parameters, the assessment 
results of the Newmark model may be close to the results based on statistical methods. 
However, in terms of current conditions, we cannot obtain the accurate input parameters 
which limit the output of the Newmark model.

From the evaluation results, this method combining the Newmark model and statisti-
cal method has a good prediction accuracy in landslide hazard assessment for the Lushan 
earthquake area. To some extent, this method overcomes the limitations of the Newmark 
model and greatly improves the accuracy of evaluation. But as we all know, based on the 
statistical analysis model, we need to use objective and complete landslide data to guar-
antee the accurate prediction result. The Newmark simplified model can carry out land-
slide hazard assessment without landslide samples. That is to say that the hazard assess-
ment based on Newmark model can be achieved quickly after the earthquake, which cannot 
be achieved by statistical analysis model. So in the future, we will explore how to further 
combine these two evaluation methods for more accurate landslide hazard assessment by 
using a small amount of known landslides, providing an effective reference for the rapid 
assessment of the subsequent landslides in the earthquake-affected area.

7 � Conclusions

The Newmark model and the statistical analysis models (LR and SVM) were combined to 
make a trial on landslide hazard assessment of the 2013 Lushan earthquake. The results 
show that critical acceleration may reflect better the actual landslide distribution in the 
Lushan earthquake-affected area compared with the accumulative displacement from the 
simplified Newmark model due to the constrained ground motion input. The statistical 
results of the zoning area, the number of landslides and the landslide number density of 
different models show that in logistic regression, the area of high hazard class accounts for 
16.3% of the total study area, where the landslide number in is 8977; in SVM, 71.5% of 
the total landslides is in the area of high hazard class; in the Newmark model, more than 
60% of the landslides are concentrated in the very low hazard area. This indicates that the 
prediction results based on the Newmark model are relatively not good. Furthermore, the 
ROC curves were used to evaluate the accuracy of the models. On the whole, the evalua-
tion results of logistic regression model and support vector machine model have no differ-
ence. The results show that the two models of LR and SVM have good prediction accuracy. 
The AUC values of LR and SVM in training data set are 0.810 and 0.823, respectively; and 
those in validation data set are 0.820 and 0.802, respectively. While the prediction accuracy 
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of the Newmark model is relatively poor, with the AUC values for the training and valida-
tion data set 0.736 and 0.735, respectively.

Acknowledgements  This study was supported by the National Natural Science Foundation of China 
(41472202).

References

Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-crite-
ria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides 9:93–106

Al-Homoud AS, Tahtamoni W (2000) Comparison between predictions using different simplified New-
marks’ block-on-plane models and field values of earthquake induced displacements. Soil Dyn Earthq 
Eng 19:73–90

Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble bivariate statistical evidential belief 
function with knowledge-based analytical hierarchy process and multivariate statistical logistic regres-
sion for landslide susceptibility mapping. CATENA 114:21–36

Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility 
mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

Bai SB, Ping LU, Jian W (2015) Landslide susceptibility assessment of the Youfang Catchment using logis-
tic regression. J Moutain Sci 12:816–827

Bray JD, Travasarou T (2007) Simplified procedure for estimating earthquake-induced deviatoric slope dis-
placements. J Geotech Geoenviron Eng 133:381–392

Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat 
Hazards Earth Syst Sci 5:853–862

Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 
2:1–27

Chen XL, Yuan RM, Yu L (2014a) Applying the Newmark’s model of the assessment of earthquake-trig-
gered landslides during the Lushan earthquake. Seismol Geol 35:661–670 (in Chinese)

Chen XL, Liu CG, Yu L, Lin C (2014b) Critical acceleration as a criterion in seismic landslide susceptibil-
ity assessment. Geomorphology 217:15–22

Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau 
Island, Hong Kong. Environ Geol 40:381–391

Deng QD, Ran YK, Yang XP, Min W, Chu QZ (2007) Map of active fault in China. Seismological Press, 
Beijing (in Chinese)

Dreyfus DK (2011) A comparison of methodologies used to predict earthquake-induced landslides. PhD 
University of Texas

Dreyfus DK, Rathje EM, Jibson RW (2013) The influence of different simplified sliding-block models and 
input parameters on regional predictions of seismic landslides triggered by the Northridge earthquake. 
Eng Geol 163:41–54

Gallen SF, Clark MK, Godt JW (2015) Coseismic landslides reveal near-surface rock strength in a high-
relief, tectonically active setting. Geology 43:11–14

Gallen SF, Clark MK, Godt JW, Roback K, Niemi NA (2016) Application and evaluation of a rapid 
response earthquake-triggered landslide model to the 25 April 2015 Mw 7.8 Gorkha earthquake, 
Nepal. Tectonophysics

Godt JW, Sener B, Verdin KL, Wald DJ, Earle PS, Harp EL, Jibson RW (2008). Rapid assessment of earth-
quake-induced landsliding. In: Tokyo, Japan: proceedings of the first world landslide forum

Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current 
techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

Hong H, Pradhan B, Xu C, Tien Bui D (2015) Spatial prediction of landslide hazard at the Yihuang 
area (China) using two-class kernel logistic regression, alternating decision tree and support vector 
machines. CATENA 133:266–281

Hosmer DW, Lemeshow S (2005) Multiple logistic regression, in applied logistic regression, 2nd edn. 
Wiley, New York, pp 31–46

Hu DY, Li J, Hao CY, Shui ZJ (2007) GIS-based landslide spatial prediction methods, a case study in Cam-
eron Highland, Malaysia. J Remote Sens 11:852–859

Huang J, Zhou Q, Wang F (2015) Mapping the landslide susceptibility in Lantau Island, Hong Kong, by 
frequency ratio and logistic regression model. Geograph Inf Sci 21:191–208



www.manaraa.com

411Natural Hazards (2019) 96:389–412	

1 3

Jian SC, Yong L, Kun YZ, Zhou N, Long ZL, Liang Y, Bo LJ (2007) Research on the DEM of topo-
graphic relief in Longmenshan river basin. J Sichuan Norm Univ 38:766–773

Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark’s sliding 
block analysis. Transportation Research Record

Jibson RW (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 
91:209–218

Jibson RW, Michael JA (2009) Maps showing seismic landslide hazards in Anchorage. Center for Inte-
grated Data Analytics Wisconsin Science Center, Alaska

Jibson RW, Harp EL, Michael JA (1998) A method for producing digital probabilistic seismic landslide 
hazard maps: an example from the Los Angeles, California, area. Open-File Report

Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide 
hazard maps: an example from the Los Angeles, California, area. Eng Geol 58:271–289

Kavzoglu T, Sahin EK, Colkesen I (2015) An assessment of multivariate and bivariate approaches in 
landslide susceptibility mapping: a case study of Duzkoy district. Nat Hazards 76:471–496

Kaynia AM, Skurtveit E, Saygili G (2011) Real-time mapping of earthquake-induced landslides. Bull 
Earthq Eng 9:955–973

Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406
Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility map-

ping using GIS and remote sensing data. Int J Remote Sens 26:1477–1491
Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using 

SVM machine learning algorithm. Eng Geol 123:225–234
McCrink TP (2001) Regional earthquake-induced landslide mapping using Newmark displacement cri-

teria. San Cruz County, California, pp 77–92
Miles SB, Ho CL (1999) Rigorous landslide hazard zonation using Newmark’s method and stochastic 

ground motion simulation. Soil Dyn Earthq Eng 18:305–323
Ministry of Construction of the People’s Republic of China (2009) Code for geotechnical engineering 

investigation GB 50021-2001 (2009). National Bureau of Quality Inspection (in Chinese)
Ministry of Water Resources of the People’s Republic of China (2014) Standard for engineering classifi-

cation of rock masses GB/T 50218-2014. Standards Press of China, Beijing (in Chinese)
Newmark NM (1965) Effects of earthquakes on dams and embankments. Géotechnique 15:139–160
Nowicki Jessee MA, Hamburger MW, Allstadt K, Wald DJ, Robeson SM, Tanyas H, Hearne M, Thomp-

son EM (2018) A global empirical model for near-real-time assessment of seismically induced 
landslides. J Geophys Res Earth Surf 123:1835–1859

Nowicki MA, Wald DJ, Hamburger MW, Hearne M, Thompson EM (2014) Development of a glob-
ally applicable model for near real-time prediction of seismically induced landslides. Eng Geol 
173:54–65

Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict land-
slide hazard in northeast Kansas, USA. Eng Geol 69:331–343

Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine 
and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

Pradel D, Smith PM, Stewart JP, Raad G (2005) Case history of landslide movement during the North-
ridge earthquake. J Geotech Geoenviron Eng 131:1360–1369

Rao G, Cheng YL, Lin AM, Yan B (2017) Relationship between landslides and active normal faulting in 
the epicentral area of the AD 1556 M ~ 8.5 Huaxian Earthquake, SE Weihe Graben (Central China). 
J Earth Sci 28:545–554

Rathje EM (2008) Probabilistic seismic hazard analysis for the sliding displacement of slopes. J Geotech 
Geoenviron Eng 134:804–814

San BT (2014) An evaluation of SVM using polygon-based random sampling in landslide susceptibil-
ity mapping: the Candir catchment area (western Antalya, Turkey). Int J Appl Earth Obs Geoinf 
26:399–412

Saygili G, Rathje EM (2008) Empirical predictive models for earthquake-induced sliding displacements 
of slopes. J Geotech Geoenviron Eng 134:790–803

Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293
Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS (2014) Earthquake induced landslide susceptibil-

ity mapping using an integrated ensemble frequency ratio and logistic regression models in West 
Sumatera Province, Indonesia. CATENA 118:124–135

Wilson RC, Keefer DK (1983) Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, 
California, Earthquake. Bull Deismolog Soc Am 73:863–877

Xu C, Xu XW (2012) The 2010 Yushu earthquake triggered landslides spatial prediction models based 
on several kernel function types. Chin J Geophys 55:2994–3005 (in Chinese)



www.manaraa.com

412	 Natural Hazards (2019) 96:389–412

1 3

Xu XW, Wen XZ, Yu G, Chen G, Klinger Y, Hubbard J, Shaw J (2009) Coseismic reverse- and oblique-slip 
surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology 37:515–518

Xu C, Xu X, Dai F, Saraf AK (2012a) Comparison of different models for susceptibility mapping of earth-
quake triggered landslides related with the 2008 Wenchuan earthquake in China. Comput Geosci 
46:317–329

Xu C, Dai F, Xu X, Yuan HL (2012b) GIS-based support vector machine modeling of earthquake-triggered 
landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 145–146:70–80

Xu C, Xu XW, Yao Q, Wang Y (2013a) GIS-based bivariate statistical modelling for earthquake triggered 
landslides susceptibility mapping related to the 2008 Wenchuan earthquake, China. Q J Eng Geol 
Hydrogeol 46:221–236

Xu C, Xu XW, Dai FC, Wu Z, He H, Shi F, Wu X, Xu S (2013b) Application of an incomplete landslide 
inventory, logistic regression model and its validation for landslide susceptibility mapping related to 
the May 12, 2008 Wenchuan earthquake of China. Nat Hazards 68:883–900

Xu XW, Wen XZ, Han ZJ (2013c) Lushan Ms 7.0 earthquake: a blind reserve-fault earthquake. Chin Sci 
Bull 58:1887–1893

Xu C, Xu X, Yao X, Dai F (2014) Three (nearly) complete inventories of landslides triggered by the May 
12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. 
Landslides 11:441–461

Xu C, Xu X, Shyu JBH (2015) Database and spatial distribution of landslides triggered by the Lushan, 
China Mw6.6 earthquake of 20 April 2013. Geomorphology 248:77–92

Xu C, Xu X, Tian Y, Shen L, Yao Q, Huang X, Ma J, Chen X, Ma S (2016) Two comparable earthquakes 
produced greatly different coseismic landslides: the 2015 Gorkha, Nepal and 2008 Wenchuan, China 
events. J Earth Sci 27:1008–1015

Xu C, Ma S, Tan Z, Xie C, Toda S, Huang X (2018) Landslides triggered by the 2016 Mj 7.3 Kumamoto, 
Japan, earthquake. Landslides 15:551–564

Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate 
statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72(1):1–12

Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on support vector machine: a case 
study on natural slopes of Hong Kong, China. Geomorphology 101:572–582

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.



www.manaraa.com

Reproduced with permission of copyright owner.
Further reproduction prohibited without permission.


	Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses: a case study of the 2013 Lushan, China, Mw6.6 earthquake
	Abstract
	1 Introduction
	2 Lushan earthquake and geological setting
	3 Data and method
	3.1 Methodology
	3.1.1 Newmark displacement model
	3.1.2 Logistic regression (LR)
	3.1.3 Support vector machine (SVM)

	3.2 Data sources and processing
	3.3 Research process

	4 Analysis of factors
	4.1 Critical acceleration (ac)
	4.2 Peak ground acceleration (PGA)
	4.3 Newmark displacement (Dn)
	4.4 Topographic relief
	4.5 Distance to rivers
	4.6 Distance to roads

	5 Results and analysis
	6 Discussion
	7 Conclusions
	Acknowledgements 
	References




